
A Static Analysis Method for Detecting Buffer Overflow
Vulnerabilities

Zhang Shuhao
∗

Nankai University
shuhao-

zhang@outlook.com

Qin Jianxing
†

Shanghai Jiao Tong University
qdelta@sjtu.edu.cn

Qu Shaobo
‡

Huazhong University of
Science and Technology

commcheck396@gmail.com

Hong Yun
§

Xi’an Jiao Tong University
yoyoball@stu.xjtu.edu.cn

ABSTRACT
Buffer overflows are a weakness that is commonly found in
some languages, such as C and Java. Any code without
a strict boundary limit can pose a potential overflow risk
and it’s easy to be unaware of them. We demonstrate an
approach to verification of C-like programs using analysis
of the source code of programs. The approach applies a
formal definition of the syntax and semantics of the subset
of C and makes use of symbolic execution. Our approach is
illustrated to capture all overflows of the source code written
in our object language.

Keywords
buffer overflow, vulnerability in programs, static analysis,
symbolic execution

1. INTRODUCTION
Buffer overflow is a typical vulnerability in programs. Many
attacks on Microsoft systems are based on various buffer
overflow problems. However, in some commonly used lan-
guages like C or Java, these problems will not be pointed
out by the compiler.

In this paper, we will use symbolic execution to detect buffer
overflow problems in small programs which are written in
the subset of C and develop an analyzing application with a
GUI.

∗Zhang wrote the code of our core part and helped with the
revision of our paper.
†Qin played the role as a leader. He provides most of the
theoretical knowledge, wrote the code of our core part and
helped with paper writing.
‡Qu wrote the code of our GUI and made our poster.
§I wrote most of this paper and made our video.

2. BACKGROUND
2.1 A glance at Buffer overflow attack
As its name suggests, buffer overflow occurs when a pro-
gram attempts to write more data to a fixed-length block
of memory or buffer than the buffer is allocated to hold[2].
Once an overflow occurs, the extra data will overwrite the
data value in adjacent memory addresses of the destination
buffer. This consequence can be used to crash a process or
modify its internal variables. The attack that is based on
this consequence is called buffer overflow.

This kind of attack can be fatal because the original data
in the buffer includes the return pointer of the exploited
function. The attacker can use the extra data to modify
these pointers and modify the address to which the process
should go next according to their own wishes. For example,
they can make it point to a dangerous attack program and
easily complete their attack.

Figure 1: buffer overflow occurs when copying string str

Furthermore, buffer overflow attack ranks high in Common
Weakness Enumeration (CWE)[2]. This sort of vulnerabil-
ity can occur easily in programs without sufficient bounds
checking. The preventing work can be sophisticated, espe-
cially when the occurrence of this kind of vulnerable problem
will not always be warned by the compiler. As a result, an
assistant tool with a function of checking potential overflow
risk can be significant.



2.2 Symbolic execution overview
Symbolic execution[1] is a way of executing a program ab-
stractly. This type of execution treats the inputs of the pro-
gram symbolically and focuses on execution paths through
the code. To be more specific, the interpreter will assume
symbolic values for inputs rather than obtaining actual in-
puts as normal execution of the program would[4], and the
result of a symbolic execution should be expressed in terms
of symbolic constants that represent the input values.

By doing an abstract execution, multiple possible inputs of
the program that share a particular path can be covered[1].
In addition, symbolic execution also has another strength,
that is, it can avoid reporting false warnings because each of
all these errors represents a particular path through the pro-
gram. This provides us an idea of checking potential buffer
overflows. For any program statement that has the possi-
bility of occurring buffer overflow problems, we can check
the value range of those involved variables to verify whether
they are satisfied the boundary constraints. If any of these
variables fail to meet the condition, we can say that a buffer
overflow problem occurs.

3. DEFINITION OF LANGUAGE
To simplify the process, we set the language of the source
code to a subset of C. For the convenience of illustrating
our ideas, we will use a less complicated language (we may
call the language SymC--), which is semantically a subset of
C, to describe our object language. Here are the detailed
definitions.

Expression:

e ::= n integer literal

| x name

| e bop e binary operation

| uop e unary operation

| alloc(e) memory allocation

Statement:

s ::= skip empty statement

| declint x integer declaration

| declptr x pointer declaration

| x← e assignment

| touch e[e] memory access

| s; s sequence

| if e then s else s conditional

Values:

v ::= int vi integer

| ptr vi vi pointer with bounds

vi ::= n concrete integer

| x symbolic integer

| uop vi unary operation

| vi bop vi binary operation

| ite a vi vi conditional

Assertions:

a ::= vi relop vi integer relation

| ¬a negation

| a ∧ a conjunction

| a ∨ a disjunction

It is also necessary to emphasize that this demo language
sharing the same semantics with our source code language
won’t be involved in our code implementation. The purpose
of developing such language is just for the convenience of
illustration.

4. PROCESS OF ANALYSIS
The general process of analysis involves several parts.

The first part includes two preparation tasks. One is to
check whether the source code can be compiled successfully.
Another is to do an initial analysis with a parser and gain
an abstract syntax tree of the code. The purpose of this
step is to transform the code into an abstract form for the
subsequent analysis.

In the second part, we will use symbolic execution to ex-
tract useful information from the result of the first step,
and generate counterexamples of the variables involved in
statements which have the risk of occurring buffer overflow.

Next, a SMT-solver will be used to check whether any of
these counter examples can be satisfied. We will have a
deeper discussion on how this solver can be used in part
4.3. With the feedback from the solver, we can locate the
potential buffer overflows in the source code.

The last part of our analysis is to print the errors discovered
to a GUI.

Figure 2: The whole process of the analysis[3]

Now, we will explain each part respectively.



4.1 Preparation
The first part of the preparation is to get the source code
the user input and compile it. Our goal is to uncover those
potential risks which cannot be warned by the compiler and
our target source code should be those which can be com-
piled. If an error occurs, we will print the error information
to the output box and halt the whole process.

Only if a source code can be compiled, will it be given to
a parser to generate an abstract syntax tree. We use pyc-
parser1 here, which is a parser of C and written in Python.
It can be replaced by any parser of C. The output will then
be the input of the next part.

4.2 From program to counterexamples
The goal of this part is to generate counterexamples. In this
part, we will use symbolic execution.

First, we will give a more specific illustration of this method.

When we do symbolic execution, we are actually executing a
path through the source code. During this process, we will
track the values of variables and the conditions that need
to be satisfied for a specific path. It’s necessary to mention
that the values that we will keep track of are all expressed
in terms of symbolic values. For example, if we have a user
input variable a and execute b = a + 1, then the values we
track should be

a 7→ α, b 7→ α+ 1

In this example, α is a symbolic value, and a 7→ α, b 7→
α + 1 is what we will keep track of. We can use symbolic
environment E as a collective name for the mapping from
name to value that we keep track of.

To get a clearer picture of the process, we can take the code
below as an example.

void foo(int *arr, int n, int head) {
if (head > 0) {

print(arr[0]);
} else {

print(arr[n]);
}

}

In this function, we will track the value of arr, n, and head.
Their symbolic constants are ptr 0 h′, n′ and head′. The
symbolic environment E looks like this.

E = {arr 7→ ptr 0 h′, n 7→ n′, head 7→ head′}

When we meet conditional statement, we will track the con-
dition for each branch. When we come to the first branch,
the path condition P we will be tracking is head′ > 0. For
the second branch, the path condition P is head′ ≤ 0. The
symbolic environment E is not updated in this function.

If there are any assumptions in the source code, it should
be described by symbolic environment E and path condition
P .

1You can find more information about pycparser at https:
//github.com/eliben/pycparser

void foo(int *arr, int n, int head) {
ASSUME(n > 0, capacity(arr) >= n);
if (head != 0) {

print(arr[0]);
} else {

print(arr[n]);
}

}

For example, if we add an assumption at the beginning of
the function, the initial E and P should be look like this
when after executing the assumption statement.

E = {arr 7→ ptr 0 h′, n 7→ n′, head 7→ head′}
P = {n′ > 0, h′ ≥ n′}

Now we can introduce our idea of generating counterexam-
ples with symbolic execution. For each memory access, the
index should be always bounded in the range of the accessed
array. This is our bounded requirement Q. Also, we have
a path condition P which should be true when the program
executes the corresponding statement. So it has to be guar-
anteed that P → Q in all cases, which implies P ∧¬Q should
not be satisfied. So we call P ∧ ¬Q a counterexample.

Evaluation rules in the form of E; e ⇓ v. It means expression
e is evaluated to value v in environment E.

E;n ⇓ int n E;x ⇓ E(x)

E; e ⇓ int v

E;uop e ⇓ int (uop v)

E; e1 ⇓ int v1 E; e2 ⇓ int v2
E; e1 bop e2 ⇓ int (v1 bop v2)

E; e1 ⇓ ptr l h E; e2 ⇓ int v

E; e1 + e2 ⇓ ptr (l − v) (h− v)

E; e1 ⇓ int v E; e2 ⇓ ptr l h

E; e1 + e2 ⇓ ptr (l − v) (h− v)

E; e1 ⇓ ptr l h E; e2 ⇓ int v

E; e1 − e2 ⇓ ptr (l + v) (h+ v)

E; e ⇓ int v

E; alloc(e) ⇓ ptr 0 v

Execution rules in the form of E,P ; s ⇓ E′;C. It means
given environment E and path condition P , after executing
the statement s the environment will be updated to E′ and
counter examples C will be generated.

Path condition P is an assertion. C is the set of generated
assertions that should not be satisfied.

E;n ⇓ int n E;x ⇓ E(x)

E,P ; declint x ⇓ E ∪ {x 7→ int x′}; {}

E,P ; declptr x ⇓ E ∪ {x 7→ ptr 0 0}; {}

E; e ⇓ v

E, P ;x← e ⇓ E[x 7→ v]; {}

E, e1 ⇓ ptr l h E, e2 ⇓ int v

E, P ; touch e1[e2] ⇓ E; {P ∧ (l > v ∨ v ≥ h)}

https://github.com/eliben/pycparser
https://github.com/eliben/pycparser


E,P ; s1 ⇓ E′;C1 E′, P ; s2 ⇓ E′′;C2

E,P ; s1; s2 ⇓ E′′;C1 ∪ C2

E; e ⇓ int v E, P ∧ v ̸= 0; s1 ⇓ E1;C1 E,P ∧ v = 0; s2 ⇓ E2;C2

E,P ; if e then s1 else s2 ⇓ merge(v,E1, E2);C1 ∪ C2

merge(v,E1, E2) = E means ∀x ∈ E1, E2:

E1(x) = int v1, E2(x) = int v2

→ E(x) = int (ite (v = 0) v2 v1)

E1(x) = ptr l1 h1, E2(x) = ptr l2 h2

→ E(x) = ptr (ite (v = 0) l2 l1) (ite (v = 0) h2 h1)

else error.

To get an intuition for what we can get from the process, we
can take the code above (function foo() with assumption)
as an example.

After execution, the generated counterexamples will be

n′ > 0 ∧ h′ ≥ n′ ∧ head′ ̸= 0 ∧ (0 > 0 ∨ 0 ≥ h)

n′ > 0 ∧ h′ ≥ n′ ∧ head′ = 0 ∧ (0 > n′ ∨ n′ ≥ h)

With the rules, we can write a program to realize this func-
tion.

4.3 Counterexample analysis
The goal for this step is to check whether any of the coun-
terexamples we get from 4.2 can be satisfied.

Suppose that we now get a set of counterexamples Ci, i =
1...n. We should check each of them. If a particular coun-
terexample can be satisfied, the line where we generate it
could have overflow risk. Now the question has transformed
to whether there exists a mapping from symbolic values to
concrete values, such that Ci = true.

So far, we’ve transformed our original problem into a satisfi-
ability problem. We can use SMT-solver z32 to solve it and
find out the counterexamples which can be satisfied. The
statement where we generate them are the errors we found.

5. GUI AND RUNNING RESULTS
After previous work, we have located the errors. The last
stage of the analysis is to print these errors. In this part, we
will provide an example code and its running results.

Our GUI is split into two parts. Users can type their source
code waiting for analyzing to the left box and get the result
from the box on the right.

Target source code

void foo(int n) {
int *arr;
if (n > 0) {

arr = alloc(n);
}
print(arr[0]);

2You can find more information about z3 at https://
github.com/Z3Prover/z3/wiki#background

}

void get(int *arr, int n, int head) {
ASSUME(n > 0, capacity(arr) >= n);
if (head != 0) {

print(arr[0]);
} else {

print(arr[n]);
}

}

The running result is like this.

Figure 3: Running result of the example code above.

Our analyser returns two errors. They’re highlighted and
provided with counter examples that can be satisfied.

6. RELATED WORKS AND COMPARISON
In the method we mentioned above, we’re actually doing
static analysis. There’s also another way to test vulnerabil-
ity of programs, which is called dynamic analysis. Unlike
static analysis, dynamic analysis evaluates the program by
executing data in real-time. The input cases can be gener-
ated by a program using random algorithm, or be typed in
by the tester.

What these two kinds of methods have in common is that
they’re both trying to find counterexamples. Though dy-
namic analysis can prove a program has overflows, it can
be overwhelmed when faced with a correct program. The
method we mentioned, on the other hand, uses static anal-
ysis and attempts to find counterexamples in a more the-
oretical way, which allows it to prove the non-existence of
counterexamples.

Besides, our method has another advantage over dynamic
analysis in efficiency. While a particular input case can only
find out some of the buffer overflows, symbolic execution can
check every possible path in the program. This allows us to
find all the errors with only one execution instead of testing
endlessly.

7. LIMITATIONS
Our project is a very basic prototype. It has several known
limitations shown in our semantics model.

• The values in the array are discarded.

• Loops are not supported in the language.

• The program has only one exit point at the end.

https://github.com/Z3Prover/z3/wiki##background
https://github.com/Z3Prover/z3/wiki##background


8. CONCLUSION
From the represented results we can see that our method has
advantages of precision, efficiency and automation. How-
ever, there are also some shortcomings. First is that the
solver we use in counterexamples analysis (4.3) is unstable.
The reason is that the satisfiability problem we are trying
to solve is a NP-hard problem. The second shortage is that
since the process gives another program as the input of our
program, it can’t handle any program according to the halt-
ing problem.

However, in most of the cases, our method can perform well
and give a correct result quickly. So we can still say that
the advantages outweigh the disadvantages and this method
can be of help in testing programs for vulnerabilities.

9. ACKNOWLEDGEMENT
I would like to express my very great appreciation to Profes-
sor Hugh Anderson and his teaching assistant Harish Venkate-
san for their valuable and constructive suggestions during
the planning and development of our project.

I would also like to thank my group-mates. They did the
really hard work of our coding part and gave me useful sug-
gestions in paper writing.

References
[1] J Aldrich. Symbolic Execution (Program Analysis lec-

ture notes - Spring 2019). https://www.cs.cmu.edu/
~aldrich/courses/17- 355- 19sp/notes/notes14-

symbolic-execution.pdf. 2019.

[2] Michael Cobb. buffer overflow. https://www.techtarget.
com/searchsecurity/definition/buffer-overflow.

[3] Wenliang Du. Computer Security:A Hands-on Approach.
Wenliang Du, 2019.

[4] Wikipedia. buffer overflow. https://en.wikipedia.
org/wiki/Symbolic_execution.

https://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes14-symbolic-execution.pdf
https://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes14-symbolic-execution.pdf
https://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/notes/notes14-symbolic-execution.pdf
https://www.techtarget.com/searchsecurity/definition/buffer-overflow
https://www.techtarget.com/searchsecurity/definition/buffer-overflow
https://en.wikipedia.org/wiki/Symbolic_execution
https://en.wikipedia.org/wiki/Symbolic_execution

	Introduction
	Background
	A glance at Buffer overflow attack
	Symbolic execution overview

	Definition of language
	Process of analysis
	Preparation
	From program to counterexamples
	Counterexample analysis

	GUI and running results
	Related works and comparison
	Limitations
	Conclusion
	acknowledgement

